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Numerical calculations have been done of the viscosity of the soft-sphere 
liquid, using a new molecular dynamics technique. It is based on a formu- 
lation of hydrodynamics which is discrete in space and time, and exactly 
renormalizable. The present data turn out to be sufficient to estimate the 
viscosity, but determination of the full equations of motion (and therefore 
renormalization) requires further calculations using a smaller discrete time 
interval; these are presently under way. The present results indicate that this 
method is more than 100 times more efficient than previous (Green-Kubo 
or nonequilibrium molecular dynamics) methods. This suggests that the 
discrete formulation is the most natural way to approach hydrodynamics. 
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1. I N T R O D U C T I O N  

In  a previous  pape r  ~1~ a detai led me thod  was descr ibed for  de te rmining  
discrete equat ions  o f  mo t ion  for  classical fluids f rom molecu la r  dynamics  
s imula t ion  da ta  on finite systems. In  the present  pape r  we apply  this me thod  
to ob ta in  numerica l ly  the equat ions  o f  mo t ion  and  small-cell  ( " b a r e " )  
viscosi ty o f  the sof t-sphere l iquid (r-12 potent ial) .  This potent ia l  was chosen 
because o f  its s implici ty and  because its t r anspor t  coefficients have been 
calcula ted by Ashurs t  and  Hoove r  ~2~ using nonequi l ib r ium molecu la r  

dynamics .  The present  me thod  gives the same result,  with abou t  200 t imes less 
calculat ion.  

In  Section 2 we descr ibe the molecu la r  dynamics  calculat ion,  and  in 
Sect ion 3 give the numer ica l  results  for  the equat ions  o f  mo t ion  and  the bare  
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viscosity. These are calculated from the raw molecular dynamics data by a 
method derived in detail previously. (1~ Because this derivation is quite 
complicated, we thought it useful in the present paper to give a very brief 
heuristic explanation of the method. 

The discrete approach involves dividing the system into cells (labeled 
by l) of width W, and dividing time into intervals of length ~-. Instead of 
continuum density variables, we define cell contents of the five conserved 
quantities: C~lm , CElm, Cex I . . . . .  (these are contents at time mr, m = integer). 
The analogs of the continuum fluxes are the transfers, denoted XNrm, x~rm,... 
(transfers across face f in a time interval labeled by m). The theory predicts 
the transfer in the interval (0, ~) from the history at times t ~< 0 by the equation 
of  motion 

[xj] = ~ B,;eh~ (1.1) 
/c 

wherej  and k are composite indices representing (Nlm) or (Nfm), etc. ; h~ is a 
history variable (usually a content at t = O, but possibly a transfer at t < 0). 
(For present purposes we ignore the constant term, nonlinear terms, and 
fluctuations included in the general theory; our numerical results do not 
involve these.) All of the (nonequivalent) equation-of-motion coefficients we 
calculated numerically are defined in Table I (also see Fig. 1), and given 
arbitrary integer labels/3 = 8, 30 ..... so Bj;k can be referred to concisely as 
B e. Each Bj;~ describes the influence of a history variable h~ on an expected 
transfer xj; for example, B8 describes the effect of the vertical momentum 
content of a cell at t = 0 on the flux of vertical momentum out the side of the 
cell (the shear transfer). Note that we consider only the system of B's involved 
in predicting the shear transfer (which are related to the viscosity); these can 
be calculated independently of all others, as shown in Ref. 1. 

These equation-of-motion coefficients B are to be calculated from 

Table I. Nonequivalent Equation-of-Motion 
Coefficients Bj:~ 

Label fl Index j(fl) Index k(fl) 

8 P . , f ,  1/2 ~ e~, l~, 0 
59 P~,f, 1/2 P~, ~, 0 
62 Py,f, 1/2 P~, ~, 0 
30 Pu,f, 1/2 Pu,f, -1/2b 

110 Pv,f, 1/2 P~,f, --3/2 

The label m = 1/2 denotes the time interval 
(0, ~). 

b The previous transfer, in the interval (-- ~-, 0). 
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Fig. 1. Meanings of cell and face labels used 
in Tables I and II. 
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ensemble  averages (denoted  ( v#k ) ,  where vj and  v~ are any cell variables) ,  
which are  es t imated by  averaging molecular  dynamics  data .  The nonequiv-  
alent  averages we have ca lcula ted  are listed in Table  II ,  labeled by  an integer 

7' so we m a y  refer to them as (vr) .  I f  we mul t ip ly  Eq. (1.1) by  a h is tory  
var iable  hk, and  ensemble-average,  we get 

<xjh ,> = (1.2) 
k 

which we regard  as an equa t ion  for  Bj,~,. F o r  example ,  the equa t ion  for  B8 
is 

(_vs) = Bs(_v15) + 2B~9(_v19) + 2Bez<_v22) - Bs(v22> . . . .  (1.3) 

The integer coefficients arise f rom symmet ry  cons idera t ions  discussed in detai l  
in Ref. 1. Al l  the terms we use in Eq. (1,2) are given in Table  I I I ,  which lists 

Table II. Nonequivalent Cell-Variable Averages 
i 

Label First index ~ Second index ~ Importance ~ 
7 J1'(7) J2"(7) (_v,> ca~b/8(v~,) 

8 Pu,f, 1/2 P~,, lz, 0 0.739 
59 P~,, f, 1/2 P~,,/2, 0 0.881 
62 P~,f, 1/2 P~, 13, 0 0.098 
30 P~,,f, 1/2 P~,, f, --1/2 0.313 

I10 Pu,f, 1/2 Pu,f, - 3 / 2  0.028 
15 Pv, ll, 0 Pu, 11, 0 -1.582 
19 P~, lz, 0 Pu, I2, 0 0.108 
22 Pv,/1, 0 Pv, 13, 0 --0.055 
72 Py,/2, 0 Py,/3, 0 --0.099 
76 Pv,/3, 0 P~, 14, 0 -0.003 
48 P~,f, --1/2 Pu,f, --1/2 --0.426 

111 Pv,f,  3/2 Pu, l~, 0 --0.001 

Notation chosen to conform with Ref. I. 
b The importance of average e to the bare viscosity [Eq. (3.2)] 

for the ~- = 0.419, 3 x 3 x 3 system of Section 3. 
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Term 

Table III. Nonequivalent Terms in Eq. (1.2) 
i 

Symmetry 
number Equation label Bj;~ label" (hkhe') label ~ coefficient b Importance 
/z fl ' /3(1) y(l') C, T O%/OT 

1 8 8 15 1 0,669 
2 8 59 19 2(1) 0.039 
3 8 62 22 2(1) --0,004 
4 8 8 22 --1 0.025 
5 8 59 72 --2(--1) 0.036 
6 8 62 76 --2(--1) 0.003 
7 8 30 8 --1 0.075 
8 8 110 111 -- 1 0.001 
9 59 59 15 1 0.818 

10 59 8 19 1 --0.061 
11 59 59 22 -- 1 0,030 
12 59 8 72 --1 0.056 
13 59 30 59 -- 1 --0.091 
14 62 62 15 1 0.094 
15 62 62 22 -- 1 0.004 
16 62 30 62 -- 1 --0.011 
17 30 30 48 1 0.398 
18 30 8 8 - 2  -0.048 
19 30 59 59 - 4 ( - 2 )  -0.038 
20 30 110 30 1 0.006 
21 110 8 111 - 2  0.001 
22 110 110 48 1 0.027 

a Notation conforms with Ref. 1. 
b C. for 2 x 2 x 2 system is given in parentheses if different from 3 x 3 x 3 values. 

for each term (numbered  by IL) which equat ion it is in (that for Be,), the 
labels of its two factors Bj;~ and  (hkh~,), and  its coefficient 6",. The first 

four rows reproduce Eq. (1.3). 
Equa t ion  (1.2) must  be solved by successive approximation.  This means 

we need a strategy for deciding which B's to calculate and  which terms to 
include;  the test of  such a strategy is the rapidity with which some desired 
result (e.g., the bare viscosity ~%) converges as the number  of terms increases. 
Repeat ing the calculat ion each time a new term is included is a tedious 
procedure;  it has been found  more useful to analytically calculate the 

" i m p o r t a n c e "  of the t~th term (call it T, =-CuBj;k(hkh~,)) defined as 
T, O~b/aT, (with other terms held constant).  This is essentially the error 
caused by leaving out  the term (unless ,this is large). We have included these 
importances in Table III ,  calculated for the 3 x 3 x 3 system with ~- = 0.419 
discussed in Section 3 (they are similar for the 2 x 2 x 2 system except that  
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terms involving averages such as y = 72 with a strong size dependence are 
more important). One can also define an importance for each average <_v~), 
namely <v~) ~b/~<v~); this is the error caused by leaving out the average, 
and is given in Table II. Our actual term-choosing strategy is mostly intuitive. 
However, the calculated importances seem to confirm intuition, in that 
averages involving variables far apart in space (7 = 76) or time (7 = 110, 11 I) 
are unimportant. It seems likely that those not included (because they are 
even further apart) will not change ~b much. We have also done calculations 
including a nonlinear convective term, (a'4~ which did not change the result. 
We believe that the truncation error is small compared to the statistical 
uncertainties described in Section 3. 

To obtain transport coefficients from B's, we transform them into 
"excess-transfer" coefficients (3~ B. These are defined by an equation [say 
(1.1')] identical to (1.1) except that the history variables h~ are contents and 
excess transfers 

Axs _-- xj -- [xj] (1.4) 

This has the advantage that when the cells are large (and fluctuations small) 
Axj __ 0 in a steady-state system and B is easy to relate to transport coeffi- 
cients; in particular the viscosity is (a~ 

~1 = - m p ( W 2 / r )  ~ ,  (1 - f)/~v,Lvzo (1.5) 
1 

where l denotes the coordinates of the center of cell l (in units of W, so I is 
dimensionless), f denotes the center of face f ,  and P is the momentum com- 
ponent transverse t o f  When the cells are not large, we will refer to Eq. (1.5) 
as the "ba re"  viscosity; the cells of Section 3 appear to be large enough so 
there is not much difference. 

Equations for the excess-transfer coefficients B may be obtained by 
substituting Eq. (1.1) into (1.4), (1.4) into (1.1'), and equating the resulting 
power series in contents and transfers term by term to Eq. (1.1). Using only 
the B's listed in Table I (and the corresponding ~'s), the result is 

B8 = -  3oB. -  11oB8 

B58 = /~59 - /~3oB5o - /~11oB5o 
B62 = /~62 - /~30B62 - /~1~oB62 ( 1 . 6 )  
B3o = - 2  oB~ - 2 1 oB0 

These equations are used to determine/~ in Section 3. 

2. M O L E C U L A R  D Y N A M I C S  C A L C U L A T I O N  

Calculation of the equation-of-motion parameters B from Eq. (1.2) 
requires knowing equilibrium averages of products of all variables; contents 
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CNz .. . . .  and transfers xN1~ ..... We have calculated these variables by molecular 
dynamics, i.e., by numerically integrating Newton's second law for N (=  32 
or 108) particles in a finite system (a periodic cube). In the soft-sphere 
liquid (a,6.2) the particles interact via the central potential 

@(r) = Es12/r 12 (2.1) 

Here s is an effective hard-core radius, and E sets the energy scale. Our 
numerical results will be quoted in the usual (2) system of units in which ~, s, 
and m (the particle mass) are the units of energy, length, and mass. 

By taking time averages of the cell variables (and assuming ergodicity) 
one obtains averages in a microcanonical ensemble (with fixed total momen- 
tum, energy, and number of particles). As the system size and total averaging 
time increase (while number density p = N/V  and energy density e = E/V 
remain constant), these averages, and the equations of motion obtained from 
them, should approach those of a thermodynamic system with this p and e, 
which we wish to calculate. Because the most accurate equilibrium equation- 
of-state calculations have been done using the Monte Carlo method, (6) for 
which the natural variable is the temperature T, rather than e, we shall 
specify the thermodynamic state of our system by T and p. 

Because of the extremely simple power-law form of the soft-sphere 
potential, the properties of the system throughout the T, p phase plane can be 
obtained from a single isotherm by a scale transformation. (5~ We therefore 
need only do calculations for a single temperature, which we may as well 
choose to be kT  = e, our unit of energy. The properties will then depend on 
O only, which is commonly (2'5) specified by a dimensionless "reduced density" 

Prod -- P S 3 1 V 2  (2.2) 

It has been previously found (2) that for Pred < 0.2, kinetic theory (in particular 
the Enskog theory applied to an "equivalent" h.ard-sphere system) gives 
good results. As prea increases toward the freezing point (prea = 0.813), the 
discrepancy between Enskog theory and the molecular dynamics viscosity 
gets quite large. By Prea = 0.6 it is already 50~o; we have chosen this value 
for our calculation, to test the new method in a region where kinetic theory 
fails. 

The molecular dynamics calculation we have done is quite standard, (7,2) 
except for the analysis of the results in terms of cell variables: we shall there- 
fore emphasize the latter here. We used the simplest possible integration 
algorithm (due to Verlet(7)), which integrates first-order equations for 
positions r~(t) and velocities v~(t) by the central-difference method: 

v,(�89 At) = v,(-�89 At) + At F,(0)/m 
r~(At) = r~(0) + At v,(�89 (2.3) 
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Thus the positions are known at integral multiples of the integration incre- 
ment At, and the velocities at half-integer multiples. The differencing errors 
in the positions introduced by this algorithm are of order (At)3, (3~ but those 
in the velocities are of order (At) 2. 

The integration was started with random velocities but regular positions 
(an fcc lattice). We need to achieve a certain temperature T (T = 1.0 in our 
units); however, since T (defined in terms of the kinetic energy) fluctuates in 
the microcanonical ensemble, and very accurate equation-of-state data 
relating T to the energy exists/6~ we chose to fix our energy at the value 
3.61E per particle given by Ref. 6 for Prea = 0.6 and a 32-particle system (the 
N = oo value quoted is almost identical). This provides a check on our 
program, since the kinetic energy per particle should be exactly 1.5 in an 
infinite system; calculated averages were 1.476 + 0.010 (32 particles, total 
time 1980At) and 1.494 + 0.004 (108 particles, 1530At). The consistency 
and convergence appear to be extremely good. (All errors are estimated from 
the scatter of partial-run averages.) Initial equilibration (i.e., melting of the 
fcc iattice) was accelerated by starting with too high a kinetic energy (by 
about 407o), integrating for about 50 At, lowering the energy to the desired 
value by scaling down the velocities, and equilibrating again for about 30 St. 
Judging from the rate of relaxation of the kinetic energy to its equilibrium 
value, these equilibration times seem ample. In order to calculate averages 
of contents and transfers, we must of course pick the cell width W and the 
time interval r. It is extremely convenient to choose W so that the average 
number of particles per cell 

Ne - p W ~ (2.4) 

is an integer (so we can approach the thermodynamic limit by adding more 
cells to the system without getting fractional N). So in practice we choose Arc 
and % and determine W from Eq. (2.4). We have used the value Arc = 4, 
which is large enough for us to expect "hydrodynamic"  behavior (i.e., 
fluctuations are not too large) but small enough that the computer (a PDP-10) 
can easily handle systems of 2 • 2 • 2 cells (N = 32) and 3 x 3 • 3 cells 
(N = 108). It has the additional advantage that an fcc lattice can be used for 
initialization. This choice gives [using p = 0.849s-3 from Eq. (2.2)] W = 1.677s. 

Once W is chosen, a natural time interval can be obtained by dividing 
by the velocity unit (proportional to thermal velocity): W/(~/m)  lj2 measures 
the time required for a free particle to cross a cell. Since hydrodynamic 
disturbances may move somewhat faster, we did calculations using 1/2 and 
1/4 of this as ~- [~- = 0.838s(~/m) -~/2 and 0.419s(~/m)-l /2].  As we discuss 
below, it turns out that an even smaller value would have been preferable; 
such calculations are now under way. 

It remains only to specify the integration increment At. Obviously 
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this should be a submultiple of the interval ~- between content determinations; 
we chose At = O.Ol048s(E/m)-112 (1/40 of the smaller ~- above), because it is 
close to the value of2xt = 0.01006 used by Ashurst and Hoover for N = 108 
and facilitates comparison with their results. 

As we integrate the equations of motion we also compute the cell contents 
and transfers; the algorithm used for this is described in the Appendix. The 
result is a magnetic tape with 540 contents and transfers (for the 27-cell case) 
per interval r. Averages of products (including those listed in Table II) were 
calculated by averaging over time, rotations and translations as described 
in Ref. 1, leading to the numerical results (Table IV) analyzed in the next 
section. 

3. N U M E R I C A L  RESULTS 

Our initial molecular dynamics calculations used W = 1.677, ~- = 0.838 
[units are s and s(E/m)- 112] as described in Section 2. Since the registry of the 
cell structure with respect to the trajectories is arbitrary, one can extract 
additional information from a set of trajectories by displacing them uniformly 
and recomputing the contents and transfers. This is most easily done by 
calculating contents and transfers for smaller cells (W = 0.838), which can 
be combined into larger cells in eight different ways. By using a smaller ~- 
(0.419) we similarly obtained data for two sets of time-translated trajectories. 
If all of  these 16 sets of data were independent, this would decrease the 

statistical error by v / ~  = 4. In fact the errors (i.e., standard deviations of 
the mean obtained by dividing the run into four segments, averaged separ- 
ately) decreased on the average by a factor of  two, so the procedure appears 
worthwhile. 

The first two columns of Table IV give the cell-variable averages obtained 
from calculations of length 3000At(2 x 2 x 2system)and 1200At(3 x 3 x 3 
system). Equations (1.2) were solved for the B's; these are given in first two 
columns of Table V. It appears that this �9 was too long, allowing contents of  
distant cells like l~ (Fig. 1) to affect the transfer (so that B's not listed in 
Table I contribute significantly to the viscosity). The large size of the B 
coefficients suggests that we ought to worry about this; if one imagines 
putting extra vertical momentum in a vertical column of cells, the equation 
of motion implies that a large fraction F 3 = 0.844 (or F 2 = 0.812 in the 
2 x 2 x 2 system) will leave the column during % where 

F 2 --- 4B8 2 + 4B~9,  F a = 4B8 3 + 8B~9 (3 .1)  

It is certainly possible that some might cross more than one cell. One symptom 
would be that in small systems, momentum would feed back into the column 
from nearby images, making F 2 < F 3 (which it is). Another symptom would 
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Table IV. Numerical Results for Averages, for W = 1.677, in 
2 X 2 X 2- and 3 X 3 X 3-Cell Systems 

~" = 0 .838  ~" = 0 .419 

L a b e l 7  2 x  2 x  2 3 x 3  x 3 2 x 2 x  2 3 x 3 x 3 

649 

8 0.417 0.326 0.379 + 0.033 0.331 + 0.026 
59 0.352 0.216 0.357 _+ 0.007 0.208 + 0.012 
62 0.126 0.058 0.057 _+ 0.041 0.025 + 0.018 
30 0.843 0.587 0.445 + 0.056 0.416 _+ 0.055 

110 0.637 -0.044 0.126 + 0.045 0.087 + 0.016 
15 3.544 3.815 3.552 _ 0.043 3.830 _+ 0.080 
19 -0.394 -0.225 -0.384 __+ 0.074 -0.178 __+ 0.094 
22 -0.528 --0.119 -0.530 _____ 0.048 -0.142 +__ 0.052 
72 -0.502 --0.163 -0.502 __+ 0.036 -0.163 __+ 0.030 
76 -0.497 -0.115 -0.496 _____ 0.034 -0.115 __+ 0.061 
48 9.902 9.494 4.479 __+ 0.060 4.283 __ 0.024 

111 0.050 -0.012 0.013 __+ 0.027 -0.014 _____ 0.015 
ii 

be that  the est imate Eq. (3.2) o f  the viscosity (in which these distant B 's  
wouId have three t imes the weight o f  those we have included) would be low 
(and it is, by a factor  o f  two). 

We therefore reanalyzed the data, using the smaller r = 0.419, obtaining 
the averages in the right ha l f  o f  Table  IV. The resulting B's  a n d / 7 ' s  f rom 
Eqs. (1.2) and (1.6) are given in Table  V. The  best est imates /7~,M (f rom 
M x M x M system data)  given in the last two columns are obta ined by 
taking account  of  image effects via Eq. (4.4) o f  Ref. 1. [They differ f r o m / 7  e 
only in t h a t / ~ 9  = 2/7;~ '2 a n d / ~ 2  = 2/7~2 '2, because the effect o f  cell 12 or 
la (Fig. 1) is doubled by its periodic image on the opposi te  side o f /1  in a 
2 x 2 x 2 system.] I t  is interesting that  F a = 0.864, still abou t  as large as 
for  the larger r. Thus all the m o m e n t u m  leaving the column ment ioned 
above left in the first ha l f  o f  the interval (reinforcing the conclusion that  the 
earlier r was too large). On the other  hand,/762 is getting small, indicating that  
shear m o m e n t u m  has not  traveled very far  during ~- = 0.419, so it is likely 
that  the B's  in Table I are sufficient for  obtaining the bare viscosity. A purely 
diffusive model  for  the leakage of  m o m e n t u m  f rom a co lumn requires much  
more  spreading before such depletion of  the co lumn;  a p roper  intuitive 
picture p robab ly  involves shear wave p ropaga t ion  as well. The bare viscosity 
is given by Eq. (1.5), which (using r = 0.419 and the B's  in Table  1) becomes 

n~ = 5 .695[ (~m) i /2 / s2] ( /78  + 2/759 + 2/762) (3.2) 

This is given at  the bo t t om of  Table  V. I t  will be noted that  the size de- 
pendence of  the viscosity is very small (less than  4~o), whereas the size 
dependences o f  B8 and/759 are much  larger (10 or 20~o). This is evidently 
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because/~8 and/~59 are sensitive to the longitudinal propagation of momen- 
tum, which ~ is not. In fact, if the/~e describing momentum from cell 15 in 
Fig. 1 crossing face f were nonzero (in the infinite system), through its 
images it would increase/~8 by 2/~ e in the 2 x 2 x 2 system and/~59 b y / ~  
in the 3 x 3 x 3 system (thus leaving % size-independent). Exactly this 
effect is apparent in Table V. This rapid longitudinal momentum propagation 
may be understood by noting that the sound velocity is ~6~ about v~ = 
5.5(~/m) 1/~, so v~- = 1.4W. This means a disturbance can travel more than the 
distance from/5 t o f d u r i n g  r. We conclude that even ~- = 0.419 is not small 
enough for Table I to be sufficient to describe the complete equations of 
motion: to describe sound waves we must either enlarge Table I (and our 
system) or decrease r. The latter is probably easier, and such calculations 
are under way. However, this difficulty does not interfere with the present 
objective [calculating the bare viscosity ~b, Eq. (3.2)]. This is only sensitive 
to transverse momentum propagation, which is sufficiently slow (as evidenced 
by the remarkable size independence of %) that it does not create image 
problems. This is not unexpected; transverse wave velocities in solids (where 
they are well defined) are slower than longitudinal ones. 

The bare viscosity involves only the first three/7 coefficients in Table I. 
The next,/~30, may be seen to be related to elasticity effects. Elastic behavior 
in Solids occurs when a shear flux is proportional to strain. In liquids, where 
shear flux and strain rate are normally proportional (viscous behavior), 
"elast ic" effects important on very short time scales may be included (9,8~ 
by adding a term in the time derivative of the shear flux to the strain rate. The 
discrete analog of such an equation relates a linear combination of shear 
transfers at different times (say �89 and -�89 to the momentum contents 
of  adjacent cells. Thisdiffers from the purely viscous equation of motion by 
having Bj;~ in which xk is a transfer at m = - �89 Such terms (such as B3o) 
may thus be thought of  as "elasticity" terms. 

The last coefficient Bl~0 in Table I represents a non-Markovian effect. It 
should be stressed that Bao, though it describes the effect of  a variable at 
t < 0, is not non-Markovian in the generally accepted sense. A continuum 
equation of  motion is still regarded as "Markov ian"  if its evolution depends 
on fluxes as well as densities ~9~ at t = 0; the fact that in a discrete theory the 
flux is necessarily averaged over -~- < t < 0 does not seem to justify 
changing the terminology. 

4, D I S C U S S I O N  

We have calculated the bare viscosity of  the soft-sphere liquid, obtaining 
for a 108-particle system % = (1.55 _+ O.07)(em)lI2/s 2. The quoted un- 
certainty is obtained from statistical fluctuations; there are two other sources 
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of error, namely truncation [of Eqs. (1.2) and (1.6)] and system-size effects. 
A feeling for the truncation error may be obtained from the importances in 
Tables II and III. Only 6 of the 22 terms in Table III have importances ex- 
ceeding the statistical error in Vb; we believe that the truncation error is 
certainly comparable to, and probably less than, the statistical error. The 
same appears to be true of the size-effect error; Table V indicates extremely 
rapid convergence with respect to system size M. It is much more rapid than 
is achievable by Green-Kubo ~1~ or nonequilibrium molecular dynamics ~2,11) 
calculations, in which useful information is essentially unobtainable from 
systems with as few as 32 particles. 

Another uncertainty appears if one wishes to compare our results with 
other calculations; the renormalization correction. An exact procedure for 
renormalization has been given in Ref. 3, and the correction will be worked 
our explicitly when calculations are done with a smaller ~-; however, com- 
parison to the result of Ashurst and Hoover ~2~ for the macroscopic viscosity 
(7 = 1.5 + 0.1) indicates that the correction is likely to be quite small. 
Assuming that it does not contribute disproportionately to the error, we may 
make an efficiency comparison between the present method and that of non- 
equilibrium molecular dynamics (and indirectly with the Green-Kubo 
method, which is generally less efficient(l~ Ashurst and Hoover sheared a 
108-particle system at four different rates, each for 32,000 At, and extrap- 
olated to zero shear rate. This 128,000 At is to be compared to the present 
1200At, which produced a somewhat smaller error; the efficiency ratio is 
therefore about 200. 

This very large difference in efficiency can be understood by noting that 
the discrete method involves calculating small-scale, short-time averages only; 
these are all we need to determine the small-cell equation-of-motion param- 
eters B. This equation of motion determines the large-scale motion through 
the exact renormalization transformation, ~3~ but large-scale fluctuations need 
no t  be simulated in the molecular dynamics calculation. It is these fluctuations 
("eddies") that introduce large statistical uncertainties into Green-Kubo 
results, and produce the related "long-time tail" in time-correlation functions. 
It is not expected that there is a non-Markovian tail in the B coefficients (for 
reasons discussed in detail elsewhere(12~), but unfortunately the present 
calculation is not accurate enough to provide independent numerical verifica- 
tion of this. The truncation errors in small B's like B~o are probably much 
larger than the statistical errors given in Table V, unlike the situation for -%. 

It should be noted that in the discrete approach, non-Markovian memory 
effects are no t  particularly important in determining the viscosity. The effect 
of B~o (or the corresponding "t ime correlation function" <vl~0)) on the 
bare viscosity is very small, as can be seen from Table II. And these terms do 
not appear to strongly influence the renormalization, which is mostly due to 
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nonlinear terms. (a,~) This contradicts what one would expect by superficial 
analogy with the Green-Kubo method; it appears the techniques are not 
closely analogous. 

In conclusion, it appears that discrete hydrodynamics provides a 
qualitatively improved method for calculating the soft-sphere viscosity. The 
method is applicable to any fluid transport property, and may allow accurate 
calculations of such properties in a wide variety of systems. 

APPENDIX.  A L G O R I T H M  FOR C O M P U T I N G  CONTENTS 
A N D  TRANSFERS 

In the course of the molecular dynamics calculation, we wish to calculate 
the contents (at each multiple of ~-, t = m~-) and the transfers [over each 
interval (mr, mr  + r)]. We describe here a reasonably simple algorithm for 
doing this to O(At ~) [more precisely, the errors in the microcanonical averages 
are O(At2); individual transfers and contents can he changed discontinuously 
by an arbitrarily small change in At if a particle just on one side of a face is 
nudged to the other side; thus the errors cannot be bounded by a multiple 
of At2]. It appears that calculation to O(At 3) or higher would be quite com- 
plicated; there may therefore be little point in going beyond the Verlet 
algorithm in calculating the trajectories. 

The calculation of the contents is relatively straightforward; after every 
~-/At time steps one computes the momentum, energy, and number contents 
of each cell by adding up mv~, �89 2 + U~, and 1, respectively, for the particles 
i in the cell. The potential energies U~ of the particles are computed by 
assigning half of each pair potential to each particle involved. Since Verlet's 
algorithm only gives v~ at half-integer multiples of At, v~(t) is interpolated 
from v~(t - At/2) and vi(t + At/2). 

The transfers require calculations at every time step. They have two 
contributions: "molecular" transfers (momentum, energy, and number 
carried across faces by particles) and "collisional" transfers (momentum and 
energy only) transferred through the interatomic force between particles on 
opposite sides of a face. The molecular transfers are incremented each time a 
new position is calculated for a particle, if its new cell differs from its old one. 
The transfers are mv~, �89 U~, and 1. They occur sometime in the 
previous interval At. Rather than try to calculate the precise time, we compute 
them at the middle of the interval. This introduces an error of order At in the 
transfer (for example, if the particle is accelerating and crosses the face near 
the beginning of the interval, we will overestimate the momentum transfer). 
However, if it crossed near the end of the interval, we would get an under- 
estimate; a careful calculation shows that the effect cancels in the micro- 
canonical averages (in fact, it already cancels if we average over time 
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displacements of a single trajectory). The averages are correct to O(At2). 
This procedure requires the velocities at the middle of the interval, which are 
fortunately known; the positions are not, and must be linearly interpolated to 
calculate the potential energy U~. 

The force F,j between each pair of interacting particles i and j contributes 
to the collisional transfers a momentum transfer 

and an energy transfer 

f F, j dt (A1) 

f�89 vj).F,j (A2) + dt 

(signs are chosen so F,j acts on i, and transfers are f romj  to i). We shall take 
the transfer to occur in a straight line, i.e., at any time F,j is contributing to 
transfers across all faces crossed by a line segment from rj to r~. Since F,j 
is computed at multiples of At, clearly we wish to approximate Eq. (A1) 
(integrated over mr < t < rn~- + , ')  by 

At [�89 j(rnr) + F,j(mr + At) +-. .  + �89 + r)] (A3) 

This is correct to O(At2). A similar form is used for Eq. (A2), except that 
v(t) is not known when t is a multiple of At; in fact one cannot even inter- 
polate, because v(t + �89 At) is not yet known [and storing all �89 + 1) of 
the F~j until it is known is prohibitive]. Therefore we extrapolate linearly 
from v(t - 3 At) and v(t - �89 At); this is still correct to O(At2). 

In the computer algorithm, the contribution F~j(n At) to Eq. (A3) for 
each f a c e f i s  computed when F~j is; the faces between rj and r~ are enumer- 
ated at each n At. (Note that eveI1 for potentials with range less than the cell 
width IV, as many as three faces, mutually perpendicular, may be crossed.) 
The limits on the integrals (A1) and (A2) (which should be when the segment 
rj to r, ceases to cross f ,  either by passing an edge o f f  or because r~ or rj 
crosses f )  are automatically accounted for by this procedure; each limit is 
approximated by the middle n At + �89 At of the interval in which it lies. This 
introduces an error of order At in the transfer, but like the error in the molec- 
ular transfer discussed above, it cancels from the ensemble average (in fact 
the part due to r, or rj crossing f happens to cancel the molecular-transfer 
error even before the ensemble averaging). 

Knowledge of the contents and transfers provides some checks on the 
correctness of the program. They satisfy exact continuity equations as) for 
momentum, number, and energy. We have verified that the former two are 
satisfied exactly by the data; the maximum discrepancy in the last decreases 
with At and is about 17o of the average energy content for At = 0.0105 and 
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r = 0.105 ( increasing to 57o at  ~- = 0.419). This is a very s t rong check on 
the calculat ions  o f  bo th  the contents  and  the transfers,  since they are done  

quite independent ly .  I t  is also a s t ronger  check on the Verlet t ra jector ies  than  
the usual  overal l  conservat ion  o f  energy (which is also satisfied, to a few 
par ts  in 105 for  N = 108). The average  longi tud ina l  m o m e n t u m  transfer ,  

which is p r o p o r t i o n a l  to the virial  pressure,  was compu ted  as 9.53 + 0.02 
( N  = 32) and 9.48 __+ 0.015 (N = 108) [in units o f  (em)l/2]. This  should be 
P/pkT,  which is known  for  the M o n t e  Car lo  work  (6~ to be 9.45; agreement  is 

very good.  
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